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1. In the gravitational theory of general relativity, par-
ticularly for the manner of introducing the energy tensor
of matter into the field equations, the 16 quantities tασ ,
which Einstein designates as the energy components of
the gravitational field1, play a decisive role. If one uses
a coordinate system for which

√
−g = 1, (1)

then one obtains for the tασ the relatively simple expres-
sions

χtασ =
1

2
δασ g

µνΓλ
µβΓ

β
νλ − gµνΓα

µβΓ
β
νσ, (2)

where—as will always be the case in the following un-
less explicitly noted otherwise—the summation is to be
carried out over indices occurring twice from 1 to 4. No-
tation:

Γλ
µν = −gλβ

[
µν
β

]
=

= −1

2
gλβ

[
∂gµβ
∂xν

+
∂gνβ
∂xµ

− ∂gµν
∂xβ

]
; (3)

the gµν are defined in the usual way through the expres-
sion for the square of the (four-dimensional) line element:

ds2 = gµνdxµdxν ; gνµ = gµν , g = Det. of gµν . (4)

The gµν are the adjugate, normalized first-order minors
in the scheme of the gµν . Finally,

δασ = gµσg
µα =

{
0
1

for

{
σ ̸= α
σ = α

(5)

and χ is (essentially) the gravitational constant.
The subject of this communication is the explicit cal-

culation of the quantities tασ in the vicinity of a stationary
sphere of incompressible, gravitating fluid. The calcula-
tion is carried out exactly, based on the values of gµν
determined by Schwarzschild2, for a spatial coordinate
system that differs only extremely slightly from a right-
angled Cartesian one, indeed one might even label it as
such. One must always specify the coordinate system
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1 A. Einstein, The Foundation of the General Theory of Relativity
(J. A. Barth 1916), pp. 45 ff.

2 Schwarzschild, Berl. Ber. 1916, p. 424.

in any calculation of the tµσ, because these quantities do
not form a tensor; for example, they do not vanish in all
systems if they do so in a particular coordinate choice.
The result reached in this special case—exact, identical
vanishing of all tµσ in the chosen reference frame—seems
to me nevertheless so astonishing that I believe it should
be brought to general discussion.

2. Schwarzschild finds in loc. cit. for the square of the
line element

ds2 = (1− α/R)dt2 − dR2

1− α/R
−R2(dϑ2 + sin2 ϑ dϕ2)

(6)

with the abbreviation

R = (r3 + ρ)1/3. (7)

r, ϑ, ϕ, t are ordinary polar coordinates and time; α and
ρ are integration constants, which depend on the density
and radius of the gravitating sphere and are, in reality,
always extraordinarily small compared to all considered
values of r or r3.
In (6) we introduce new coordinates x1, x2, x3, x4

through the equations

x1 = R sinϑ cosϕ

x2 = R sinϑ sinϕ (8)

x3 = R cosϑ,

x4 = t.

From this, it follows in the usual way:

R2 = x2
1 + x2

2 + x2
3, (9)

further,

dt = dx4,

dR2 =
xµxν

R2
dxµdxν

R2(dϑ2 + sin2 ϑ dϕ2) = dx2
1 + dx2

2 + dx2
3 − dR2

=
(
δµν − xµxν

R2

)
dxµdxν (10)[

µ, ν = 1, 2, 3; δµν

{
= 0
= 1

for µ

{
̸=
=

ν
]
.

(Here we temporarily use our summation notation some-
what inconsistently for sums that run only from 1 to 3!)
By substituting (10) into (6), one obtains the line ele-

ment in the new coordinates

ds2 = (1− α/R)dx2
4 −

[
δµν +

αxµxν

R3(1− α/R)

]
dxµdxν ,

(11)
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from which one reads off from (4):

gµν =

[
δµν +

αxµxν

R3(1− α/R)

]
for µ, ν = 1, 2, 3.

g14 = g24 = g34 = 0; g44 = 1− α/R. (12)

The letter R here and henceforth is to be understood as
an abbreviation for

R = +
√

x2
1 + x2

2 + x2
3. (13)

In order to apply equations (2) and (3) to the calculation
of the tασ , we must first show that the chosen reference
system satisfies the condition (1). First, one obtains on
a coordinate axis, say the x1-axis (x2 = x3 = 0), for the
fundamental tensor (12) the simple scheme:

gµν =


− R

R− α
0 0 0

0 −1 0 0
0 0 −1 0

0 0 0
R− α

R

 (14)

For later use, we note immediately the scheme of the
contravariant fundamental tensor at a point on the x1-
axis

|gµν | =


−R− α

R
0 0 0

0 −1 0 0
0 0 −1 0

0 0 0
R

R− α

 . (15)

From (14) it follows, in view of the spherical symmetry
of the field, that equation (1) is satisfied everywhere; for
any arbitrary point can be relocated onto the x1-axis by
a transformation of determinant +1 (spatial rotation).
Equations (2) and (3) are thus applicable.

The transformation just mentioned is, as is well known,
linear. Under linear transformations, however, the quan-
tities tασ have tensorial covariance (which is easy to show);
they possess, at any rate, linear homogeneous transfor-
mation formulas. Therefore, it will suffice to compute
these quantities only at an arbitrary point on the x1-axis
(which greatly simplifies the calculation). Since it will be
shown that they all vanish identically at such a point, we
may conclude that they vanish identically everywhere.

From (12) one easily recognizes that, for a point on

the x1-axis, among the 40 quantities
∂gµν
∂xσ

, only a few

differ from zero. For these, a straightforward calculation
yields:

∂g11
∂x1

=
α

(R− α)2
∂g12
∂x2

=
∂g13
∂x3

= − α

R(R− α)
∂g44
∂x1

=
α

R2

All others = 0.


(17)

For the Γλ
µν one then obtains from (3) and (15)

Γλ
µν = −gλλ

[
µν
λ

]
= −1

2
gλλ

[
∂gµλ
∂xν

+
∂gνλ
∂xµ

− ∂gµν
∂xλ

]
.

(18)

(That no summation over the index λ is to be performed
may be indicated by the round brackets.) We thus need

to examine the 40 quantities

[
µν
λ

]
to determine which of

them are non-zero based on (17).
A. µ, ν, λ ”spatial” (i.e., = 1, 2, 3).

1. µ ̸= ν.

a) µ ̸= λ ̸= ν. (3 quantities). They vanish since among
(17) there is no term with three different indices.
b) λ = µ. (6 quantities).([

µν
µ

])
=

1

2

(
∂gµν
∂xν

)
.

They vanish, since in (17) there are no such quantities
with only spatial indices.

2. µ = ν.

a) λ ̸= µ. (6 quantities).
Non-zero when λ = 1, µ = 2, 3. Specifically:[

22
1

]
=

[
33
1

]
= − α

R(R− α)
.

b) λ = µ. (3 quantities).([
µµ
µ

])
=

1

2

(
∂gµµ
∂xµ

)
.

Non-zero for µ = 1, specifically:[
11
1

]
=

1

2

α

(R− α)2
.

B. One index equals 4. (6 + 9 = 15 quantities).
In each term, either differentiation with respect to x4

occurs, or one of the quantities g14, g24, g34 is differenti-
ated. Therefore, these 15 quantities vanish.
C. Two indices equal 4. (3 + 3 = 6 quantities).
Non-zero are apparently only[

41
4

]
= −

[
44
1

]
=

1

2

α

R2
.

D. All three indices equal 4. (1 quantity).
Vanishes. –
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Based on this survey, one finds from (18) in consider-
ation of (15):

Γ1
22 = Γ1

33 = − α

R2
,

Γ1
11 = −Γ4

41 =
1

2

α

R(R− α)
,

Γ1
44 = −1

2

α(R− α)

R3
,

All others = 0.−


(19)

The expressions (2), which we now have to form, can
be written with the abbreviation

Aα
σ = gµνΓα

µβΓ
β
νσ (20)

as follows:

χtασ =
1

2
δασA

λ
λ −Aα

σ . (21)

We compute Aα
σ . Due to (15), all terms in (20) with

µ ̸= ν vanish. Writing somewhat more explicitly:

Aα
σ = g11Γα

1βΓ
β
1σ + g22Γα

2βΓ
β
2σ

+ g33Γα
3βΓ

β
3σ + g44Γα

4βΓ
β
4σ, (22)

one recognizes that the terms grouped in the 2nd and
3rd terms also vanish individually due to (19): if β = 2
or 3 because of the third factor, otherwise because of the
second factor. Remaining is

Aα
σ = g11Γα

1βΓ
β
1σ + g44Γα

4βΓ
β
4σ. (23)

From this, it is immediately evident that all Aα
σ contain-

ing the index 2 or 3 vanish. Thus, only the following
remain to be examined:

A4
1, A1

4, A1
1, A4

4. (24)

In the expressions concerned, all terms in which β = 2, 3
fall away, as well as those in which a Γ quantity contains
the index 4 once or three times. From this, it follows

A4
1 = A1

4 = 0. (25)

Finally, one computes explicitly from (23), (19), and (15):

A1
1 = g11(Γ1

11)
2 + g44Γ1

44Γ
4
41

A4
4 = g11(Γ4

14)
2 + g44Γ4

41Γ
1
44

}
= (26)

= −R− α

R
· 1
4

α2

R2(R− α)2
+

R

R− α
· 1
4

α2

R4
= 0.

Thus, on the x1-axis, all quantities A
α
σ vanish identically

in R(= x1). Due to (21), the same holds for the tασ . As
remarked above in anticipation, it follows, due to the co-
variance of these quantities under linear transformations
and due to the spherical symmetry of the field, that the
tασ vanish identically everywhere (outside the gravitating
sphere) in the chosen reference system in all coordinates.
Q.E.D.

3. This result seems to me, in any case, to be of con-
siderable importance for our understanding of the phys-
ical nature of the gravitational field. For either we must
abandon viewing the tασ defined by equations (2) as the
energy components of the gravitational field; but then,
first of all, the significance of the ”conservation laws”
(cf. A. Einstein loc. cit.) would disappear, and the task
would arise to securely re-establish this integral compo-
nent of the foundations anew. However, if we adhere
to the expressions (2), then our calculation teaches us
that there are real gravitational fields (i.e., fields that
cannot be ”transformed away”) with completely vanish-
ing—or, more correctly, ”transformable-away”—energy
components; fields in which not only momentum and en-
ergy flux, but also the energy density and the analogues
of Maxwellian stresses can be made to vanish for finite
regions by a suitable choice of coordinate system.


